数据分析报告
随着个人的文明素养不断提升,我们使用报告的情况越来越多,通常情况下,报告的内容含量大、篇幅较长。那么,报告到底怎么写才合适呢?下面是小编为大家收集的数据分析报告,欢迎阅读,希望大家能够喜欢。
数据分析报告1一、总体概况
在国家信息网络战略及“互联网+”战略实施的大力推动下,我区从政策、人才、产品等方面不断加大对电子商务发展的投入力度,取得了良好效果。20xx年,区内电子商务市场规模实现平稳增长,实现电商交易总额104亿元,较20xx年同比增长17 %。其中网络零售额全年累计33.9亿元,同比增长15%;农产品销售全年累计10.1亿元,同比增长5%。
二、电商成交指数分析
(一)电商交易总额。20xx年,区内全年电商成交总额达104亿元,同比增长17%,尤其是农产品上行增势喜人,但总体来看,电商交易总额增速较20xx年约28%的增长率有所放缓。究其原因:
一是政策和市场因素。20xx年以前,我区电商发展基础差,电商成交额度小,随着国家电商综合示范创建项目开展,上下行通道全面打通,大量财力、物力、人力投身其中,尤其是“电商服务中心—站—点”三级服务体系的建成,以智能网仓和城乡物流通道为基础的电商物流配送体系全面运行,以区域公共品牌“山韵黔江”及产品品牌为支撑的网销品牌体系初步形成,各大电商企业、电商平台、尤其是社群电商应势发力,销量节节攀升,促进了我区电商飞速发展。如今,随着国 ……此处隐藏26292个字……
可以分析以前的销售结果,哪类、什么价格的更受消费者欢迎,方便以后进货。
四、 总结
通过自己的实践,对数据挖掘有了新的认识。简单来说,数据挖掘是基于“归纳”的思路,从大量的数据中(因为是基于归纳的思路,因此数据量的大小很大程度上决定了数据挖掘结果的鲁棒性)寻找规律,为决策提供证据。从这种角度上来说,数据挖掘可能并不适合进行科学研究,因为从本质上来说,数据挖掘这个技术是不能证明因果的,以一个最典型的例子来说,例如数据挖掘技术可以发现啤酒销量和尿布之间的关系,但是显然这两者之间紧密相关的关系可能在理论层面并没有多大的意义。不过,仅以此来否定数据挖掘的意义,显然就是对数据挖掘这项技术价值加大的抹杀,显然,数据挖掘这项技术从设计出现之初,就不是为了指导或支持理论研究的,它的重要意义在于,它在应用领域体现出了极大地优越性。一下是我参阅资料总结的设计数据挖掘的步骤:
① 理解数据和数据的来源
② 获取相关知识与技术
③ 整合与检查数据
④ 去除错误或不一致的数据。
⑤假设数据模型。
⑥ 实际数据挖掘工作(data mining)。
⑦ 测试和验证挖掘结果(testing and verfication)。
⑧ 解释和应用(interpretation and use)。
由上述步骤可看出,数据挖掘牵涉了大量的准备工作与规划工作,事实上许多专家都认为整套数据挖掘的过程中,有80%的时间和精力是花费在数据预处理阶段,其中包括数据的净化、数据格式转换、变量整合,以及数据表的链接。可见,在进行数据挖掘技术的分析之前,还有许多准备工作要完成。